grbossibleLOGOfasa2

VaiopoulosPhoto

Μέλος AI Catalyst, Φυσικός, Msc στα Πληροφοριακά Συστήματα, ML/DL Specialist

My job as a ML/DL Engineer is to support companies and Organizations with the appropriate tools and knowledge that will allow their teams build intelligent software components and integrate them into current ICT infrastructure.

Specialties (25 years of experience):

– ML/DL/AI engineering with a strong focus in Computer Vision.

– Building intelligent software components to provide solutions that improve processes/products.

– AI software/application integration in ICT systems (from problem understanding to model training to final deployment and production).

– Data Science & Business Intelligence (traditional DWH/ETL/BI infrastructure design).

– Information Systems Engineering (Analysis, Design, Integration, Testing, Deployment).

– Data/Process Engineering & Business Analysis.

– ICT Project Management.

ML/DL applications:

– Computer Vision applications like faults optical detection (with tensorflow and other DL frameworks).

– Pattern discovery in health-care (custom Python implementation using numpy & other packages).

– Systems logging analysis (with SciKitLearn and Python).

– CRM & logistics data-mining applications (SPSS & R implementations).

– Web tools for applying Statistics & ML on custom datasets (in R).

ML/DL sources (indicative list):

– Deep Learning & Machine Learning books, like the Hands on ML book by Geron, 2019, 2022.

– Deep Learning tutorials & notebooks (from Kaggle and several other blogs), scientific papers & MOOCs.

– Tensorflow, Pytorch and other DL frameworks tutorials & notebooks.

– Data Science and Data Analysis books, tutorials & notebooks.

– Python packages documentation for DL, ML and DS.

Older sources (indicative list):

– Boosting: Foundations and Algorithms (Schapire, Freund, MIT Press, 2014).

– An Introduction to Statistical Learning with R (Hastie et al, Springer, 2013).

– R & R Studio tutorials and documentation.

– Applied Predictive Modeling (Kuhn, Johnson, Springer, 2013) .

– The Elements of Statistical Learning (Hastie et al, Springer, 2009).

– Pattern Recognition and Machine Learning (Bishop, Springer, 2007).

– Introduction to Data Mining (Tan et al, Pearson, 2005).

– Data Mining, Practical Machine Learning Tools and Techniques (Whitten, Kaufmann, 2004).

– Mastering Data Mining (Berry & Linoff, Wiley, 1999).My job as a ML/DL Engineer is to support companies and Organizations with the appropriate tools and knowledge that will allow their teams build intelligent software components and integrate them into current ICT infrastructure. Specialties (25 years of experience): – ML/DL/AI engineering with a strong focus in Computer Vision. – Building intelligent software components to provide solutions that improve processes/products. – AI software/application integration in ICT systems (from problem understanding to model training to final deployment and production). – Data Science & Business Intelligence (traditional DWH/ETL/BI infrastructure design). – Information Systems Engineering (Analysis, Design, Integration, Testing, Deployment). – Data/Process Engineering & Business Analysis. – ICT Project Management. ML/DL applications: – Computer Vision applications like faults optical detection (with tensorflow and other DL frameworks). – Pattern discovery in health-care (custom Python implementation using numpy & other packages). – Systems logging analysis (with SciKitLearn and Python). – CRM & logistics data-mining applications (SPSS & R implementations). – Web tools for applying Statistics & ML on custom datasets (in R). ML/DL sources (indicative list): – Deep Learning & Machine Learning books, like the Hands on ML book by Geron, 2019, 2022. – Deep Learning tutorials & notebooks (from Kaggle and several other blogs), scientific papers & MOOCs. – Tensorflow, Pytorch and other DL frameworks tutorials & notebooks. – Data Science and Data Analysis books, tutorials & notebooks. – Python packages documentation for DL, ML and DS. Older sources (indicative list): – Boosting: Foundations and Algorithms (Schapire, Freund, MIT Press, 2014). – An Introduction to Statistical Learning with R (Hastie et al, Springer, 2013). – R & R Studio tutorials and documentation. – Applied Predictive Modeling (Kuhn, Johnson, Springer, 2013) . – The Elements of Statistical Learning (Hastie et al, Springer, 2009). – Pattern Recognition and Machine Learning (Bishop, Springer, 2007). – Introduction to Data Mining (Tan et al, Pearson, 2005). – Data Mining, Practical Machine Learning Tools and Techniques (Whitten, Kaufmann, 2004). – Mastering Data Mining (Berry & Linoff, Wiley, 1999).

 x 
Το καλάθι σας είναι άδειο.

GRBossible 2023

Festival
Workshop
Πρόγραμμα
Εισηγητές
Dr. Jorge-A. Sanchez-P.
Streza Daniel
Fotitzidis Tolee
Αναγνωστοπούλου Μαρία-Γαβριέλλα
Βαϊόπουλος Ευθύμης
Βλάχος Γιώργος
Βογιατζής Μάριος
Γεωργαλά Μαρία
Γεωργίου Άγις
Γιαννούλη Δέσποινα
Γκικοπούλη Δωροθέα
Εγγλεζάκης Γιώργος
Ζησιμάτος Γιάννης
Κίσσας Κωνσταντίνος
Κλειδά Φανή
Κόντος Τζώρτζης
Κότσιφα Ολίβια
Κρύπας Θωμάς
Κυριακοπούλου Αγάπη
Κώτης Γιάννης
Λαγούδη Έλενα
Μαρίνου-Ξύδη Ανδριαννή
Μέγας Γιώργος
Μιχαηλίδου Ελισάβετ-Ειρήνη
Μπάκουλη Άννα
Οικονόμου Παναγιώτης
Παρατσόκης Γιώργος
Ροΐδης Μάριος
Σταμπουλής Γιώργος
Τεάζης Ιωάννης
Τεκίδου Λία
Τσαφαράς Σπύρος
Χασανδρινού Μαριτίνα
Χωματίδης Δημήτρης
Open Talks
Πρόγραμμα
Ομιλητές
Economides Peter
Fotitzidis Tolee
Karydis-Karandreas Alexandros
Keraboss Stella
Αλεξίου-Χατζάκη Αικατερίνη
Αρμύρα Έλλη
Γκικοπούλη Δωροθέα
Καραγιαννάκη Αγγελική
Κόλλιας Στέφανος
Κριεμάδης Θάνος
Κυριακοπούλου Αγάπη
Λάμπρου Παντελής
Μοζ Αλέξανδρος
Νούσιας Αλέξανδρος
Παπαδούλη Κατερίνα
Σουλτάτη Δήμητρα
Σωτηριάδης Παύλος-Πέτρος
Τσαντίλας Παναγιώτης
Φούσκας Κωνσταντίνος
Χελιώτη Ελένη
Πληροφορίες Εταιρικής Συμμετοχής
Τοποθεσία
Start-ups
Meeting Corner Υποστήριξης Νεοφυών Επιχειρήσεων
Υποστηρικτές & Χορηγοί
Σε ποιους απευθύνεται
Φόρμα Συμμετοχής Επισκεπτών
Βραβεία
Αντικείμενα Βραβείων
Επιτροπή Αξιολόγησης
Αναγνωστοπούλου Μαρία-Γαβριέλλα
Γκορτζής Αντώνης
Κώτης Γιάννης
Ντάλλας Βίκυ
Παράσχου Κατερίνα
Τσίλογλου Αναστασία
Όροι Δήλωσης Συμμετοχής
Τρόπος Πληρωμής
Υποβολή Υποψηφιότητας
Για εταιρίες: Εκδήλωση ενδιαφέροντος
Επικοινωνία

Εγγραφή στο newsletter